The envelope theory and the improved envelope theory: an overview of these approximation methods

Presented by Cyrille Chevalier

September 8, 2022

Nuclear and subnuclear physics department of Umons

Table of contents

- The Envelope Theory (ET) for systems of all identical particles
 - What is the ET ?
 - Essential idea behind the ET
 - Compact equations
 - Commentary
 - Tests
 - To improve ET
- Coupling with the dominantly orbital state method (DOSM)
 - Application of the DOSM to compact equations
 - Methodology
 - Tests

Table of contents

- ET and improved ET for systems of N_a identical particles plus one different (systems of $N_a + 1$ particles)
 - Why to generalize ?
 - Compact equations for the ET
 - Coupling with the DOSM
 - Concrete results
- Conclusion : why should you use the envelope theory ?

The ET provides approximation of spectrum for a very large class of Hamiltonians [1].

^[1] Semay, Ducobu (2016) Eur. J. Phys., 37, 045403

^[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

The ET provides approximation of spectrum for a very large class of Hamiltonians [1].

For today, we will use:

$$H = \sum_{i=1}^{N} T(p_i) + \sum_{i < j=2}^{N} V(r_{ij})$$

with $p_i = |\vec{p_i}|$ and $r_{ij} = |\vec{r_i} - \vec{r_j}|$.

^[1] Semay, Ducobu (2016) Eur. J. Phys., 37, 045403

^[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

The ET provides approximation of spectrum for a very large class of Hamiltonians [1].

For today, we will use:

$$H = \sum_{i=1}^{N} T(p_i) + \sum_{i < j=2}^{N} V(r_{ij})$$

with $p_i = |\vec{p_i}|$ and $r_{ij} = |\vec{r_i} - \vec{r_j}|$.

The basic idea of the ET is to approximate this hamiltonian with a set of harmonic oscillator (HO) Hamiltonian [2].

^[1] Semay, Ducobu (2016) Eur. J. Phys., 37, 045403

^[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

Remark about the *N* identical body HO:

$$H_{OH} = \sum_{i=1}^{N} \frac{\vec{p}_{i}^{2}}{2m} + \sum_{i < j=2}^{N} \rho \vec{r}_{ij}^{2} - \frac{\vec{P}^{2}}{2Nm} \quad \text{with } \vec{P} = \sum_{i=1}^{N} \vec{p}_{i}.$$

^[3] Silvestre-Brac, Semay, Buisseret, Brau (2010) J. Math. Phys., 51, 032104

Remark about the *N* identical body HO:

$$H_{OH} = \sum_{i=1}^{N} \frac{\vec{p}_i^2}{2m} + \sum_{i < j=2}^{N} \rho \vec{r}_{ij}^2 - \frac{\vec{P}^2}{2Nm} \quad \text{with } \vec{P} = \sum_{i=1}^{N} \vec{p}_i.$$

The exact spectrum for this Hamiltonian can be analytically found [3]:

$$E_{n_i,l_i} = \sqrt{\frac{2N
ho}{m}}Q(N)$$
 with $Q(N) = \sum_{i=1}^{N-1} (2n_i + l_i + D/2)$

[3] Silvestre-Brac, Semay, Buisseret, Brau (2010) J. Math. Phys., 51, 032104

Remark about the *N* identical body HO:

$$H_{OH} = \sum_{i=1}^{N} \frac{\vec{p}_{i}^{\,2}}{2m} + \sum_{i < j=2}^{N} \rho \vec{r}_{ij}^{\,2} - \frac{\vec{P}^{2}}{2Nm} \quad \text{with } \vec{P} = \sum_{i=1}^{N} \vec{p}_{i}.$$

The exact spectrum for this Hamiltonian can be analytically found [3]:

$$E_{n_i,l_i} = \sqrt{rac{2N
ho}{m}}Q(N) ext{ with } Q(N) = \sum_{i=1}^{N-1}(2n_i+l_i+D/2)$$

(We use natural units).

[3] Silvestre-Brac, Semay, Buisseret, Brau (2010) J. Math. Phys., 51, 032104

Aim: find the spectrum of this generic Hamiltonian

$$H = \sum_{i=1}^{N} T(p_i) + \sum_{i < j=2}^{N} V(r_{ij}).$$

^[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

Aim: find the spectrum of this generic Hamiltonian

$$H = \sum_{i=1}^N T(p_i) + \sum_{i < j=2}^N V(r_{ij}).$$

To this end, we introduce an auxiliary Hamiltonian:

$$ilde{H} = \sum_{i=1}^{N} ilde{T}_i(p_i, \mu_i) + \sum_{i < j=2}^{N} ilde{V}_{ij}(r_{ij}, \rho_{ij}).$$

^[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

Aim: find the spectrum of this generic Hamiltonian

$$H = \sum_{i=1}^N T(p_i) + \sum_{i < j=2}^N V(r_{ij}).$$

To this end, we introduce an auxiliary Hamiltonian:

$$ilde{H} = \sum_{i=1}^{N} ilde{T}_i(p_i, \mu_i) + \sum_{i < j=2}^{N} ilde{V}_{ij}(r_{ij}, \rho_{ij}).$$

• μ_i and ρ_{ij} are called **auxiliary fields** [2]. For now, they depend on the variables $\vec{p_i}$ and $\vec{r_i}$.

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

Commentaries about the auxiliary Hamiltonian:

$$ilde{H} = \sum_{i=1}^{N} ilde{T}_i(\mathbf{p}_i, \mu_i) + \sum_{i < j=2}^{N} ilde{V}_{ij}(\mathbf{r}_{ij}, \rho_{ij}).$$

^[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

Commentaries about the auxiliary Hamiltonian:

$$ilde{H} = \sum_{i=1}^{N} ilde{T}_i(p_i, \mu_i) + \sum_{i < j=2}^{N} ilde{V}_{ij}(r_{ij},
ho_{ij}).$$

• Illustration for the potential:

$$\tilde{V}_{ij}(r_{ij}, \rho_{ij}) = \rho_{ij}r_{ij}^2 + V(J(\rho_{ij})) + \rho_{ij}J(\rho_{ij})^2$$

where $J(x)$ is the inverse of $V'(x)/(2x)$.

^[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

Commentaries about the auxiliary Hamiltonian:

$$ilde{H} = \sum_{i=1}^{N} ilde{T}_i(p_i, \mu_i) + \sum_{i < j=2}^{N} ilde{V}_{ij}(r_{ij},
ho_{ij}).$$

• Illustration for the potential:

 $\tilde{V}_{ij}(r_{ij}, \rho_{ij}) = \rho_{ij}r_{ij}^2 + V(J(\rho_{ij})) + \rho_{ij}J(\rho_{ij})^2$ where J(x) is the inverse of V'(x)/(2x). $\Rightarrow \tilde{H}$ looks like an HO Hamiltonian.

^[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

Commentaries about the auxiliary Hamiltonian:

$$ilde{H} = \sum_{i=1}^{N} ilde{T}_i(p_i, \mu_i) + \sum_{i < j=2}^{N} ilde{V}_{ij}(r_{ij},
ho_{ij}).$$

• Illustration for the potential:

 $ilde{V}_{ij}(r_{ij},
ho_{ij}) =
ho_{ij}r_{ij}^2 + V(J(
ho_{ij})) +
ho_{ij}J(
ho_{ij})^2$ where J(x) is the inverse of V'(x)/(2x).

 \Rightarrow $ilde{H}$ looks like an HO Hamiltonian.

• Setting the constraints $\frac{\delta \tilde{H}}{\delta \mu_i} = \frac{\delta \tilde{H}}{\delta \rho_{ij}} = 0$, *H* is recovered [2].

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

Idea behind the ET: to replace the **auxiliary fields** by **auxiliary parameters** [2]. \tilde{H} becomes then an HO Hamiltonian.

^[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

Idea behind the ET: to replace the **auxiliary fields** by **auxiliary parameters** [2]. \tilde{H} becomes then an HO Hamiltonian.

The spectrum of
$$H$$
 is approximately recovered by setting

$$\frac{\partial \tilde{E}}{\partial \mu_i}\Big|_{\mu_i = \mu_{i0}} = \frac{\partial \tilde{E}}{\partial \rho_{ij}}\Big|_{\rho_{ij} = \rho_{ij0}} = 0 \text{ where } \tilde{E} \text{ is an energy level of } \tilde{H} [2].$$

^[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

Idea behind the ET: to replace the **auxiliary fields** by **auxiliary parameters** [2]. \tilde{H} becomes then an HO Hamiltonian.

The spectrum of
$$H$$
 is approximately recovered by setting

$$\frac{\partial \tilde{E}}{\partial \mu_i}\Big|_{\mu_i = \mu_{i0}} = \frac{\partial \tilde{E}}{\partial \rho_{ij}}\Big|_{\rho_{ij} = \rho_{ij0}} = 0 \text{ where } \tilde{E} \text{ is an energy level of } \tilde{H} [2].$$

Conclusion: for each energy level, the method gives a set $\{\mu_{i0}, \rho_{ij0}\}$ that approximates *H*.

^[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

 \Rightarrow Basically *H* is approximated by a set of auxiliary HO Hamiltonians, one for each level [2].

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

[4] Semay, Roland (2013) Res. Phys., 3, 231

 \Rightarrow Basically *H* is approximated by a set of auxiliary HO Hamiltonians, one for each level [2].

It can be shown that the constraints

$$\frac{\partial \tilde{E}}{\partial \mu_i}\Big|_{\mu_i=\mu_{i0}} = \frac{\partial \tilde{E}}{\partial \rho_{ij}}\Big|_{\rho_{ij}=\rho_{ij0}} = 0$$

lead to a set of three equations called **compact equations** of the ET [4].

^[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

^[4] Semay, Roland (2013) Res. Phys., **3**, 231

The ET for systems of all identical particles Compact equations

Practical user necessary informations: let us take the following generic Hamiltonian

$$H = \sum_{i=1}^{N} T(|\vec{p}_i|) + \sum_{i < j=2}^{N} V(|\vec{r}_i - \vec{r}_j|),$$

^[4] Semay, Roland (2013) Res. Phys., 3, 231

The ET for systems of all identical particles

Practical user necessary informations: let us take the following generic Hamiltonian

$$H = \sum_{i=1}^{N} T(|\vec{p_i}|) + \sum_{i < j=2}^{N} V(|\vec{r_i} - \vec{r_j}|),$$

the next system gives an approximation for its spectrum [4]:

$$\left\{egin{aligned} E &= NT(p_0) + C_N^2 V(
ho_0) \ Np_0 \, T'(p_0) &= C_N^2
ho_0 \, V'(
ho_0) \ \sqrt{C_N^2}
ho_0 p_0 &= Q \end{aligned}
ight.$$

[4] Semay, Roland (2013) Res. Phys., **3**, 231

The ET for systems of all identical particles

Practical user necessary informations: let us take the following generic Hamiltonian

$$H = \sum_{i=1}^{N} T(|\vec{p_i}|) + \sum_{i < j=2}^{N} V(|\vec{r_i} - \vec{r_j}|),$$

the next system gives an approximation for its spectrum [4]:

$$\begin{cases} E = NT(p_0) + C_N^2 V(\rho_0) \\ Np_0 T'(p_0) = C_N^2 \rho_0 V'(\rho_0) \\ \sqrt{C_N^2} \rho_0 p_0 = Q \end{cases}$$

[4] Semay, Roland (2013) Res. Phys., **3**, 231

The ET for systems of all identical particles Compact equations

Practical user necessary informations: let us take the following generic Hamiltonian

$$H = \sum_{i=1}^{N} T(|\vec{p_i}|) + \sum_{i < j=2}^{N} V(|\vec{r_i} - \vec{r_j}|),$$

the next system gives an approximation for its spectrum [4]:

$$\begin{cases} E = NT(p_0) + C_N^2 V(\rho_0) \\ Np_0 T'(p_0) = C_N^2 \rho_0 V'(\rho_0) \\ \sqrt{C_N^2 \rho_0 p_0} = Q \end{cases}$$
with $Q(N) = \sum^{N-1} (2p_0 + b) + (N-1)$

• with $Q(N) = \sum_{i=1}^{N-1} (2n_i + l_i) + (N-1)\frac{D}{2}$,

^[4] Semay, Roland (2013) Res. Phys., 3, 231

The ET for systems of all identical particles

Practical user necessary informations: let us take the following generic Hamiltonian

$$H = \sum_{i=1}^{N} T(|\vec{p_i}|) + \sum_{i < j=2}^{N} V(|\vec{r_i} - \vec{r_j}|),$$

the next system gives an approximation for its spectrum [4]:

$$\begin{cases} E = NT(p_0) + C_N^2 V(\rho_0) \\ Np_0 T'(p_0) = C_N^2 \rho_0 V'(\rho_0) \\ \sqrt{C_N^2} \rho_0 p_0 = Q \end{cases}$$

• with
$$Q(N) = \sum_{i=1}^{N-1} (2n_i + l_i) + (N-1)\frac{D}{2}$$
,
• with, $\forall i, j$, $p_0^2 = \langle \vec{p_i}^2 \rangle$ and $\rho_0^2 = \langle (\vec{r_i} - \vec{r_j})^2 \rangle$.

[4] Semay, Roland (2013) Res. Phys., **3**, 231

 $\ensuremath{\mathsf{ET}}$ & DOSM for $\ensuremath{\mathit{N_a}}\xspace+1$ 000000

The ET for systems of all identical particles Commentary about ET

• Variational character: ET can give an upper or a lower bound [2].

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

- [4] Semay, Roland (2013) Res. Phys., **3**, 231
- [5] Semay (2015) Few-Body Syst., 56, 149

The ET for systems of all identical particles Commentary about ET

- Variational character: ET can give an upper or a lower bound [2].
- The compact equations have a nice semi-classical interpretation [4].

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

- [4] Semay, Roland (2013) Res. Phys., **3**, 231
- [5] Semay (2015) Few-Body Syst., 56, 149

The ET for systems of all identical particles Commentary about ET

- Variational character: ET can give an upper or a lower bound [2].
- The compact equations have a nice semi-classical interpretation [4].
- Solution may be **analytical** with *N* as a variable [5].

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
[4] Semay, Roland (2013) Res. Phys., 3, 231
[5] Semay (2015) Few-Body Syst., 56, 149

• Variational character: for some Hamiltonian, the ET gives an upper or a lower bound [2].

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

[6] Semay (2011) Phys. Rev. A, 83, 024101

- Variational character: for some Hamiltonian, the ET gives an upper or a lower bound [2].
 - Variational character $= \tilde{H}$ are tangent to H

^[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

^[6] Semay (2011) Phys. Rev. A, 83, 024101

- Variational character: for some Hamiltonian, the ET gives an upper or a lower bound [2].
 - Variational character $= \tilde{H}$ are tangent to H

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
[6] Semay (2011) Phys. Rev. A, 83, 024101

- Variational character: for some Hamiltonian, the ET gives an upper or a lower bound [2].
 - Variational character = \tilde{H} are tangent to H + comparison theorem [6].

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
[6] Semay (2011) Phys. Rev. A, 83, 024101

- Variational character: for some Hamiltonian, the ET gives an upper or a lower bound [2].
 - In a practical way: define the function $b_V(x)$ such that $b_V(x^2) = V(x)$.

^[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

- Variational character: for some Hamiltonian, the ET gives an upper or a lower bound [2].
 - In a practical way: define the function $b_V(x)$ such that $b_V(x^2) = V(x)$.

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

- Variational character: for some Hamiltonian, the ET gives an upper or a lower bound [2].
 - In a practical way: define the function $b_V(x)$ such that $b_V(x^2) = V(x)$.
 - b_V is concave \Rightarrow upper bound
 - b_V is convexe \Rightarrow lower bound
 - b_V is flat \Rightarrow exact result

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
The ET for systems of all identical particles A variational character for ET

- Variational character: for some Hamiltonian, the ET gives an upper or a lower bound [2].
 - In a practical way: define the function $b_V(x)$ such that $b_V(x^2) = V(x)$.
 - b_V is concave \Rightarrow upper bound
 - b_V is convexe \Rightarrow lower bound
 - b_V is flat \Rightarrow exact result

^[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

The ET for systems of all identical particles A variational character for ET

- Variational character: for some Hamiltonian, the ET gives an upper or a lower bound [2].
 - In a practical way: define the function $b_V(x)$ such that $b_V(x^2) = V(x)$.
 - b_V is concave \Rightarrow upper bound
 - b_V is convexe \Rightarrow lower bound
 - b_V is flat \Rightarrow exact result
 - Warning: this must be true for V and T

^[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

The ET for systems of all identical particles A variational character for ET

- Variational character: for some Hamiltonian, the ET gives an upper or a lower bound [2].
 - In a practical way: define the function $b_V(x)$ such that $b_V(x^2) = V(x)$.
 - b_V is concave \Rightarrow upper bound
 - b_V is convexe \Rightarrow lower bound
 - b_V is flat \Rightarrow exact result
 - Warning: this must be true for V and T
 - $\bullet\,$ if it is not the case \Rightarrow no defined variational character

^[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

A semi-classical interpretation

• Semi-classical interpretation for the compact equations [4]:

A semi-classical interpretation

- Semi-classical interpretation for the compact equations [4]:
- N particles rotating on a circle

A semi-classical interpretation

- Semi-classical interpretation for the compact equations [4]:
- N particles rotating on a circle
- With a "symmetrization"

- Semi-classical interpretation for the compact equations [4]:
- N particles rotating on a circle
- With a "symmetrization"

- Semi-classical interpretation for the compact equations [4]:
- N particles rotating on a circle
- With a "symmetrization"
- Energy: $E \approx NT(p_0) + C_N^2 V(\rho_0)$

- Semi-classical interpretation for the compact equations [4]:
- N particles rotating on a circle
- With a "symmetrization"
- Energy: $E \approx NT(p_0) + C_N^2 V(
 ho_0)$
- Angular momentum: $L = Nd_0 p_0 \approx \sqrt{C_N^2} \rho_0 p_0$

- Semi-classical interpretation for the compact equations [4]:
- N particles rotating on a circle
- With a "symmetrization"
- Energy: $E \approx NT(p_0) + C_N^2 V(
 ho_0)$
- Angular momentum: $L = Nd_0 p_0 \approx \sqrt{C_N^2} \rho_0 p_0$

A semi-classical interpretation

- Semi-classical interpretation for the compact equations [4]:
- N particles rotating on a circle
- With a "symmetrization"
- Energy: $E \approx NT(p_0) + C_N^2 V(
 ho_0)$
- Angular momentum:
 - $\boldsymbol{L} = \boldsymbol{N} d_0 \boldsymbol{p}_0 \approx \sqrt{C_N^2} \rho_0 \boldsymbol{p}_0$

$$\left\{egin{aligned} E &= NT(p_0) + C_N^2 V(
ho_0) \ \sqrt{C_N^2}
ho_0 p_0 &= Q \ Np_0 \, T'(p_0) &= C_N^2
ho_0 V'(
ho_0) \end{aligned}
ight.$$

A semi-classical interpretation

- Semi-classical interpretation for the compact equations [4]:
- N particles rotating on a circle
- With a "symmetrization"
- Energy: $E \approx NT(p_0) + C_N^2 V(
 ho_0)$
- Angular momentum:
 - $\boldsymbol{L} = \boldsymbol{N} d_0 \boldsymbol{p}_0 \approx \sqrt{C_N^2} \rho_0 \boldsymbol{p}_0$

$$\begin{cases} E = NT(p_0) + C_N^2 V(\rho_0) \\ \sqrt{C_N^2} \rho_0 p_0 = \mathbf{Q} \\ Np_0 T'(p_0) = C_N^2 \rho_0 V'(\rho_0) \end{cases}$$

The ET for systems of all identical particles Analycity

Hamiltonian:
$$T(p) = \frac{\vec{p}^2}{2m}$$

$$V(x) = ax^2$$

 \Rightarrow "Approximated" spectrum: $E = Q \sqrt{\frac{2N}{m}a}$

The ET for systems of all identical particles Analycity

Hamiltonian:
$$T(p) = \frac{\vec{p}^{2}}{2m}$$
 $V(x) = ax^{2}$
 \Rightarrow "Approximated" spectrum: $E = Q\sqrt{\frac{2N}{m}a}$
Hamiltonian: $T(x) = Fx^{\alpha}$ $V(x) = \operatorname{sgn}(\beta)Gx^{\beta}$
 \Rightarrow Approximated spectrum:
 $E = \operatorname{sgn}(\beta)(\beta + \alpha) \left(\left(\frac{NF}{|\beta|} \right)^{\beta} \left(\frac{G}{\alpha} \right)^{\alpha} \left(\sqrt{C_{N}^{2}} \right)^{2\alpha - \alpha\beta} Q^{\alpha\beta} \right)^{1/(\alpha + \beta)}$

The ET for systems of all identical particles Analycity

Hamiltonian:
$$T(p) = \frac{\vec{p}^{2}}{2m}$$
 $V(x) = ax^{2}$
 \Rightarrow "Approximated" spectrum: $E = Q\sqrt{\frac{2N}{m}a}$
Hamiltonian: $T(x) = Fx^{\alpha}$ $V(x) = \operatorname{sgn}(\beta)Gx^{\beta}$
 \Rightarrow Approximated spectrum:
 $E = \operatorname{sgn}(\beta)(\beta + \alpha) \left(\left(\frac{NF}{|\beta|} \right)^{\beta} \left(\frac{G}{\alpha} \right)^{\alpha} \left(\sqrt{C_{N}^{2}} \right)^{2\alpha - \alpha\beta} Q^{\alpha\beta} \right)^{1/(\alpha + \beta)}$
Hamiltonian: $T(p) = \frac{\vec{p}^{2}}{2m}$ $V(x) = -V_{g}e^{-\frac{(x_{i} - x_{j})^{2}}{a^{2}}}$
 \Rightarrow Approximated spectrum : $E = -C_{N}^{2}V_{g}e^{2W(\delta)}(2W(\delta) + 1)$ where
 $\delta = -\frac{1}{2} \left(\frac{N}{V_{g}2m(C_{N}^{2})^{2}a^{2}} Q^{2} \right)^{1/2}$ and $W(x)$ is a Lambert function.

ET for *N* id.

ET & DOSM for $N_a + 1$

The ET for systems of all identical particles

Tests

Figure: Biding energy for weakly-interacting bosons (gaussian interaction) with D = 3 - Exact results in circles, ET results in diamonds.

ET & DOSM for $N_a + 1$

The ET for systems of all identical particles

Tests

Figure: Biding energy for self-gravitating bosons (coulomb interaction) with D = 3 - Exact results in circles, ET results in diamonds.

• The improved ET: Q has a strong degeneracy.

• The improved ET: Q has a strong degeneracy.

• The idea is to modify Q (inspired by [7]),

- The improved ET: Q has a strong degeneracy.
 - The idea is to modify Q (inspired by [7]),

$$Q = \phi \sum_{i=1}^{N-1} \left(n_i + \frac{1}{2} \right) + \sum_{i=1}^{N-1} l_i + (N-1) \frac{D-2}{2}.$$

• The improved ET: Q has a strong degeneracy.

• The idea is to modify Q (inspired by [7]),

$$Q = \phi \sum_{i=1}^{N-1} \left(n_i + \frac{1}{2} \right) + \left[\sum_{i=1}^{N-1} l_i + (N-1) \frac{D-2}{2} \right].$$

• The improved ET: Q has a strong degeneracy.

• The idea is to modify Q (inspired by [7]),

$$Q = \phi \sum_{i=1}^{N-1} \left(n_i + \frac{1}{2} \right) + \left[\lambda \right].$$

• The improved ET: Q has a strong degeneracy.

• The idea is to modify Q (inspired by [7]),

$$Q = \phi \left[\sum_{i=1}^{N-1} \left(n_i + \frac{1}{2} \right) \right] + \lambda.$$

- The improved ET: Q has a strong degeneracy.
 - The idea is to modify Q (inspired by [7]),

$$Q = \left[\phi\right] \sum_{i=1}^{N-1} \left(n_i + \frac{1}{2}\right) + \lambda.$$

- The improved ET: Q has a strong degeneracy.
 - The idea is to modify Q (inspired by [7]),

$$Q = \left[\phi\right] \sum_{i=1}^{N-1} \left(n_i + \frac{1}{2}\right) + \lambda.$$

• How to choose ϕ ?

- The improved ET: Q has a strong degeneracy.
 - The idea is to modify Q (inspired by [7]),

$$Q = \left[\phi\right] \sum_{i=1}^{N-1} \left(n_i + \frac{1}{2}\right) + \lambda.$$

• How to choose ϕ ?

• fit on a single known accurate solution [5]

- The improved ET: Q has a strong degeneracy.
 - The idea is to modify Q (inspired by [7]),

$$Q = \left[\phi\right] \sum_{i=1}^{N-1} \left(n_i + \frac{1}{2}\right) + \lambda.$$

- $\bullet\,$ How to choose ϕ ?
 - fit on a single known accurate solution [5]
 - DOSM [8]

The DOSM for systems of all identical particles $_{\rm What\ is\ the\ DOSM\ ?}$

Strategy behind the DOSM [8]:

(1) To start with a classical purely orbital solution

^[8] Semay (2015) Eur. Phys. J. Plus, 130, 156

The DOSM for systems of all identical particles What is the DOSM ?

Strategy behind the DOSM [8]:

- $(1)\;$ To start with a classical purely orbital solution
- (2) To start a radial perturbation (still classically)

^[8] Semay (2015) Eur. Phys. J. Plus, 130, 156

The DOSM for systems of all identical particles What is the DOSM ?

Strategy behind the DOSM [8]:

- (1) To start with a classical purely orbital solution
- (2) To start a radial perturbation (still classically)
- (3) To quantify the perturbation

^[8] Semay (2015) Eur. Phys. J. Plus, 130, 156

- (1) To start with a classical purely orbital solution
- (2) To start a radial perturbation (still classically)
- (3) To quantify the perturbation

- (1) To start with a classical purely orbital solution
- (2) To start a radial perturbation (still classically)
- (3) To quantify the perturbation

$$\left\{egin{aligned} & ilde{E}_0 = NT(ilde{p}_0) + C_N^2 V(ilde{
ho}_0) \ &\sqrt{C_N^2} ilde{
ho}_0 ilde{p}_0 = \lambda \ &N ilde{
ho}_0 T'(ilde{
ho}_0) = C_N^2 ilde{
ho}_0 V'(ilde{
ho}_0) \end{aligned}
ight.$$

- (1) To start with a classical purely orbital solution
- (2) To start a radial perturbation (still classically)
- (3) To quantify the perturbation

$$\begin{split} & \tilde{
ho_0} \xrightarrow{pert.} \tilde{
ho_0} + \Delta \rho \\ & ilde{
ho_0} \xrightarrow{pert.} \sqrt{p_r^2 + \left(rac{\lambda}{\sqrt{C_N^2}(ilde{
ho_0} + \Delta
ho)}
ight)^2} \end{split}$$

- (1) To start with a classical purely orbital solution
- (2) To start a radial perturbation (still classically)
- (3) To quantify the perturbation

- (1) To start with a classical purely orbital solution
- (2) To start a radial perturbation (still classically)
- (3) To quantify the perturbation

$$\begin{split} \tilde{E}_{0} &= NT(\tilde{p_{0}}) + C_{N}^{2}V(\tilde{\rho_{0}}) \xrightarrow{\text{pert.}} \\ \Delta E &= \left(\frac{N}{2\tilde{p_{0}}}T'(\tilde{p_{0}})\right)p_{r}^{2} + \left(\frac{N\tilde{p_{0}}}{\tilde{\rho_{0}}^{2}}T'(\tilde{p_{0}})\right) \\ &+ \frac{N\tilde{p_{0}}^{2}}{2\tilde{\rho_{0}}^{2}}T''(\tilde{p_{0}}) + \frac{C_{N}^{2}}{2}V''(\tilde{\rho_{0}})\right)\Delta\rho^{2} \end{split}$$

- (1) To start with a classical purely orbital solution
- (2) To start a radial perturbation (still classically)
- (3) To quantify the perturbation

Strategy:

- (1) To start with a classical purely orbital solution
- (2) To start a radial perturbation (still classically)
- (3) To quantify the perturbation

$$\Delta E = \frac{p_r^2}{2\mu} + \frac{k}{2}\Delta\rho^2 \rightarrow \Delta E = \sqrt{\frac{k}{\mu}}\left(n + \frac{1}{2}\right)$$

Strategy:

- (1) To start with a classical purely orbital solution
- (2) To start a radial perturbation (still classically)
- (3) To quantify the perturbation

$$\Delta E = \frac{p_r^2}{2\mu} + \frac{k}{2}\Delta\rho^2 \rightarrow \Delta E = \sqrt{\frac{k}{\mu}}\left(n + \frac{1}{2}\right)$$

Strategy:

- (1) To start with a classical purely orbital solution
- (2) To start a radial perturbation (still classically)
- (3) To quantify the perturbation

Test on HO
$$\rightarrow \sum_{i=1}^{N-1} \left(n_i + \frac{1}{2} \right) = \sqrt{C_N^2} \left(n + \frac{1}{2} \right)$$

Aim: to compare ET and DOSM in the same conditions.

Aim: to compare ET and DOSM in the same conditions. (1) To restructure Q,

$$Q = \phi \sum_{i=1}^{N-1} \left(n_i + \frac{1}{2} \right) + \lambda$$

Aim: to compare ET and DOSM in the same conditions. (1) To restructure Q,

$$Q = \phi \sum_{i=1}^{N-1} \left(n_i + \frac{1}{2} \right) + \lambda$$
$$= \lambda \epsilon + \lambda \qquad \text{avec } \epsilon = \frac{\phi}{\lambda} \sum_{i=1}^{N-1} \left(n_i + \frac{1}{2} \right)$$

Aim: to compare ET and DOSM in the same conditions.
(1) To restructure Q,
(2) To develop for ε ≪ 1 (radial perturbation),

$$egin{aligned} Q &= \lambda \epsilon + \lambda \
ho_0 &= ilde{
ho_0} + \Delta
ho \ p_0 &= ilde{
ho_0} + \Delta
ho \end{aligned}$$

Aim: to compare ET and DOSM in the same conditions.
(1) To restructure Q,
(2) To develop for ε ≪ 1 (radial perturbation),

$$egin{array}{ll} ilde{E}_0 =& \mathsf{N} T(ilde{
ho_0}) + C_{\mathsf{N}}^2 \mathsf{V}(ilde{
ho_0}) \xrightarrow{\operatorname{pert.}} \ \Delta E =& \mathsf{N} ilde{
ho_0} \, T'(ilde{
ho_0}) \epsilon \end{array}$$

Aim: to compare ET and DOSM in the same conditions.
(1) To restructure Q,
(2) To develop for ε ≪ 1 (radial perturbation),

$$egin{aligned} & ilde{E}_0 = \mathsf{N} \mathcal{T}(ilde{p}_0) + C_{\mathsf{N}}^2 \mathsf{V}(ilde{
ho}_0) & \stackrel{pert.}{\longrightarrow} \ & \Delta E = \mathsf{N} ilde{p}_0 \, \mathcal{T}'(ilde{p}_0) & rac{\phi}{\lambda} \sum_{i=1}^{N-1} \left(\mathsf{n}_i + rac{1}{2}
ight) \end{aligned}$$

(3) Determination of ϕ

$$DOSM \to \Delta E = \sqrt{\frac{k}{C_N^2 \mu}} \sum_{i=1}^{N-1} \left(n_i + \frac{1}{2} \right)$$

improved ET $\to \Delta E = N \tilde{p_0} T'(\tilde{p_0}) \frac{\phi}{\lambda} \sum_{i=1}^{N-1} \left(n_i + \frac{1}{2} \right)$

(3) Determination of ϕ

$$\phi = \frac{\lambda}{N\tilde{p_0}T'(\tilde{p_0})}\sqrt{\frac{k}{C_N^2\mu}}$$

with
$$\mu = rac{ ilde{p_0}}{ extsf{NT'}(ilde{p_0})}$$

and
$$k = \frac{2N\tilde{p_0}}{\tilde{\rho_0}^2}T'(\tilde{p_0}) + \frac{N\tilde{p_0}^2}{\tilde{\rho_0}^2}T''(\tilde{p_0}) + C_N^2V''(\tilde{\rho_0})$$

The DOSM for systems of all identical particles

Methodology

Methodology [8]:

Methodology [8]:

• To choose I_i and calculate λ ,

$$\lambda = \sum_{i=1}^{N-1} l_i + (N-1) \frac{D-2}{2}$$

Methodology [8]:

- To choose I_i and calculate λ ,
- To solve the ET compact equations for a purely orbital excitation (to find $\tilde{\rho_0}$ and $\tilde{p_0}$),

$$egin{cases} \sqrt{C_N^2} ilde{
ho_0} ilde{
ho_0} = \lambda \ N ilde{
ho_0} \, T'(ilde{
ho_0}) = C_N^2 ilde{
ho_0} \, V'(ilde{
ho_0}) \end{cases}$$

Methodology [8]:

- To choose I_i and calculate λ ,
- To solve the ET compact equations for a purely orbital excitation (to find $\tilde{\rho_0}$ and $\tilde{p_0}$),
- \bullet To compute $\phi{}_{\rm r}$

$$\phi = \frac{\lambda}{N\tilde{\rho_0}T'(\tilde{\rho_0})}\sqrt{\frac{k}{C_N^2\mu}} \text{ with } \mu = \frac{\tilde{\rho_0}}{NT'(\tilde{\rho_0})}$$

and $k = \frac{2N\tilde{\rho_0}}{\tilde{\rho_0}^2}T'(\tilde{\rho_0}) + \frac{N\tilde{\rho_0}^2}{\tilde{\rho_0}^2}T''(\tilde{\rho_0}) + C_N^2V''(\tilde{\rho_0})$

Methodology [8]:

- To choose I_i and calculate λ ,
- To solve the ET compact equations for a purely orbital excitation (to find $\tilde{\rho_0}$ and $\tilde{p_0}$),
- To compute ϕ ,
- To choose n_i and calculate Q (do not forget ϕ),

$$\boldsymbol{Q} = \phi \sum_{i=1}^{N-1} \left(n_i + \frac{1}{2} \right) + \lambda$$

Methodology [8]:

- To choose I_i and calculate λ ,
- To solve the ET compact equations for a purely orbital excitation (to find $\tilde{\rho_0}$ and $\tilde{p_0}$),
- To compute ϕ ,
- To choose n_i and calculate Q (do not forget ϕ),
- To resolve ET compact equations with this Q.

$$\begin{cases} E = NT(p_0) + C_N^2 V(\rho_0) \\ \sqrt{C_N^2} \rho_0 p_0 = Q \\ Np_0 T'(p_0) = C_N^2 \rho_0 V'(\rho_0) \end{cases}$$

The ET for systems of all identical particles Example

Hamiltonian: $T(x) = Fx^{\alpha}$ $V(x) = \operatorname{sgn}(\beta)Gx^{\beta}$

 \Rightarrow Determination of $\tilde{
ho_0}$ and $\tilde{
ho_0}$:

$$\tilde{\rho_0} = \left(\frac{N\alpha F \lambda^{\alpha}}{|\beta| G \sqrt{C_N}^{\alpha+2}}\right)^{1/(\alpha+\beta)} \text{ and } \tilde{p_0} = \frac{\lambda}{\sqrt{C_N} \tilde{\rho_0}}$$

Result is from [9] arXiv:2111.14744 (to appear in Few-Body Syst.)

The ET for systems of all identical particles Example

- Hamiltonian: $T(x) = Fx^{\alpha}$ $V(x) = \operatorname{sgn}(\beta)Gx^{\beta}$
 - \Rightarrow Determination of $\tilde{
 ho_0}$ and $\tilde{
 ho_0}$:

$$\tilde{\rho_0} = \left(\frac{N\alpha F \lambda^{\alpha}}{|\beta| G \sqrt{C_N}^{\alpha+2}}\right)^{1/(\alpha+\beta)} \text{ and } \tilde{\rho_0} = \frac{\lambda}{\sqrt{C_N} \tilde{\rho_0}}$$

⇒ Computation of ϕ :

$$\phi = \sqrt{\alpha + \beta}$$

Result is from [9] arXiv:2111 14744 (to appear in Few-Body Syst.)

The ET for systems of all identical particles Example

- Hamiltonian: $T(x) = Fx^{\alpha}$ $V(x) = \operatorname{sgn}(\beta)Gx^{\beta}$
 - \Rightarrow Determination of $\tilde{
 ho_0}$ and $\tilde{
 ho_0}$:

$$\tilde{\rho_0} = \left(\frac{N\alpha F \lambda^{\alpha}}{|\beta| G \sqrt{C_N}^{\alpha+2}}\right)^{1/(\alpha+\beta)} \text{ and } \tilde{\rho_0} = \frac{\lambda}{\sqrt{C_N} \tilde{\rho_0}}$$

⇒ Computation of ϕ :

$$\phi = \sqrt{\alpha + \beta}$$

 \Rightarrow Final spectrum:

$$E = \operatorname{sgn}(\beta)(\beta + \alpha) \left(\left(\frac{NF}{|\beta|} \right)^{\beta} \left(\frac{G}{\alpha} \right)^{\alpha} \left(\sqrt{C_N^2} \right)^{2\alpha - \alpha\beta} Q^{\alpha\beta} \right)^{1/(\alpha+\beta)}$$

with $Q = \sqrt{\alpha + \beta} \sum_{i=1}^{N-1} \left(n_i + \frac{1}{2} \right) + \lambda$

Result is from [9] arXiv:2111 14744 (to appear in Few-Body Syst.)

 $\begin{array}{c} \mathsf{ET} \And \mathsf{DOSM} \text{ for } \mathsf{N}_{\mathsf{a}} + 1 \\ \circ \circ \circ \circ \circ \circ \circ \end{array}$

The ET for systems of all identical particles

Tests

Figure: Biding energy for weakly-interacting bosons (gaussian interaction) with d = 3 - Exact results in circles, ET results in diamonds, $\phi = 1.82$ results in dashed line.

ET & DOSM for $N_a + 1$

The ET for systems of all identical particles

Tests

Figure: Biding energy for self-gravitating bosons (coulomb interaction) with d = 3 - Exact results in circles, ET results in diamonds, $\phi = 1$ results in dashed line.

The ET for systems of all identical particles

Tests

$n_1 + n_2$	$I_1 + I_2$	Exact	ET ($\phi = 2$)	ET ($\phi = \sqrt{2}$)
0	0	2.128	2.468	2.165
0	1	2.606	2.914	2.662
1	0	2.739	3.300	2.842
0	2	2.959	3.300	3.080
1	1	3.125	3.646	3.237
0	3	3.299	3.646	3.448
2	0	3.260	3.961	3.387
1	2	3.422	3.961	3.589
0	4	3.581	3.961	3.780
Δ			15%	3.8%

Table: Eigenmasses in GeV given by a model of light baryons (D = 3 and N = 3).

The ET for systems of all identical particles

Tests

$n_1 + n_2$	$I_1 + I_2$	Exact	ET ($\phi = 2$)	ET ($\phi = \sqrt{2}$)
0	0	2.128	2.468	2.165
0	1	2.606	2.914	2.662
1	0	2.739	3.300	2.842
0	2	2.959	3.300	3.080
1	1	3.125	3.646	3.237
0	3	3.299	3.646	3.448
2	0	3.260	3.961	3.387
1	2	3.422	3.961	3.589
0	4	3.581	3.961	3.780
Δ			15%	3.8%

Table: Eigenmasses in GeV given by a model of light baryons (D = 3 and N = 3).

- Large-*N* approach of QCD :
 - N quarks + one gluon

- Large-*N* approach of QCD :
 - N quarks + one gluon
- Constituent approach:
 - Interaction with gluonic field → potential

- Large-N approach of QCD :
 - N quarks + one gluon
- Constituent approach:
 - Interaction with gluonic field → potential
- Combination:
 - To solve a $N_a + 1$ particles quantum system

Compact equations

Practical user necessary informations: let us take the following generic Hamiltonian

$$H = \sum_{i=1}^{N_a} T_a(|\vec{p}_i|) + T_b(|\vec{p}_b|) + \sum_{i < j=2}^{N_a} V_{aa}(|\vec{r}_i - \vec{r}_j|) + \sum_{i=1}^{N_a} V_{ab}(|\vec{r}_i - \vec{r}_b|),$$

^[9] Semay, Cimino, Willemyns (2020) Few-Body Syst., 61, 19

Compact equations

Practical user necessary informations: let us take the following generic Hamiltonian

$$H = \sum_{i=1}^{N_a} T_a(|\vec{p}_i|) + T_b(|\vec{p}_b|) + \sum_{i < j=2}^{N_a} V_{aa}(|\vec{r}_i - \vec{r}_j|) + \sum_{i=1}^{N_a} V_{ab}(|\vec{r}_i - \vec{r}_b|),$$

the next system gives an approximation for its spectrum [9]:

$$\begin{cases} E = N_a T_a(\pi'_0) + T_b(p_0) + C_{N_a}^2 V_{aa}(\rho_0) + N_a V_{ab}(\rho'_0) \\ T_a'(\pi'_0) \frac{\pi_0^2}{\pi'_0} = C_{N_a}^2 V_{aa}'(\rho_0) \rho_0 + \frac{N_a - 1}{2} V_{ab}'(\rho'_0) \frac{\rho_0^2}{\rho'_0} \\ T_b'(p_0) p_0 + \frac{1}{N_a} T_a'(\pi'_0) \frac{\rho_0^2}{\pi'_0} = N_a V_{ab}'(\rho'_0) \frac{r_0^2}{\rho'_0} \\ \pi_0 \rho_0 \sqrt{\frac{N_a - 1}{2}} = Q(N_a) \\ p_0 r_0 = Q(2) \end{cases}$$

• with
$$\pi'_0{}^2 = \frac{\pi_0^2}{N_a} + \frac{\rho_0^2}{N_a^2}$$
 and $\rho'_0{}^2 = \frac{N_a - 1}{2N_a} \rho_0^2 + r_0^2$
• with $Q(M) = \sum_{i=1}^{M-1} \left(2n_i + l_i + \frac{D}{2}\right)$

Compact equations

Practical user necessary informations: let us take the following generic Hamiltonian

$$H = \sum_{i=1}^{N_a} T_a(|\vec{p}_i|) + T_b(|\vec{p}_b|) + \sum_{i < j=2}^{N_a} V_{aa}(|\vec{r}_i - \vec{r}_j|) + \sum_{i=1}^{N_a} V_{ab}(|\vec{r}_i - \vec{r}_b|),$$

the next system gives an approximation for its spectrum [9]:

$$\begin{cases} E = N_a T_a(\pi_0') + T_b(p_0) + C_{N_a}^2 V_{aa}(\rho_0) + N_a V_{ab}(\rho_0') \\ T_a'(\pi_0') \frac{\pi_0^2}{\pi_0'} = C_{N_a}^2 V_{aa}'(\rho_0) \rho_0 + \frac{N_a - 1}{2} V_{ab}'(\rho_0') \frac{\rho_0^2}{\rho_0'} \\ T_b'(p_0) p_0 + \frac{1}{N_a} T_a'(\pi_0') \frac{\rho_0^2}{\pi_0'} = N_a V_{ab}'(\rho_0') \frac{r_0^2}{\rho_0'} \\ \pi_0 \rho_0 \sqrt{\frac{N_a - 1}{2}} = Q(N_a) \\ p_0 r_0 = Q(2) \end{cases}$$

• with
$$\pi'_0{}^2 = \frac{\pi_0^2}{N_a} + \frac{\rho_0^2}{N_a^2}$$
 and $\rho'_0{}^2 = \frac{N_a - 1}{2N_a} \rho_0^2 + r_0^2$
• with $Q(M) = \sum_{i=1}^{M-1} \left(2n_i + l_i + \frac{D}{2}\right)$

The ET and DOSM for systems of $N_a + 1$ particles Compact equations

Comparison with compact equations for systems of all identical particles:

$$\begin{cases} E = NT(p_{0}) + C_{N}^{2}V(\rho_{0}) \\ Np_{0}T'(p_{0}) = C_{N}^{2}\rho_{0}V'(\rho_{0}) \\ \sqrt{C_{N}^{2}}\rho_{0}p_{0} = Q \end{cases} \longleftrightarrow \begin{cases} E = N_{a}T_{a}(\pi_{0}') + T_{b}(p_{0}) + C_{N_{a}}^{2}V_{aa}(\rho_{0}) + N_{a}V_{ab}(\rho_{0}') \\ T_{a}'(\pi_{0}')\frac{\pi_{0}^{2}}{\pi_{0}'} = C_{N_{a}}^{2}V_{aa}'(\rho_{0})\rho_{0} + \frac{N_{a}-1}{2}V_{ab}'(\rho_{0}')\frac{\rho_{0}^{2}}{\rho_{0}'} \\ T_{b}'(p_{0})p_{0} + \frac{1}{N_{a}}T_{a}'(\pi_{0}')\frac{\rho_{0}^{2}}{\pi_{0}'} = N_{a}V_{ab}'(\rho_{0}')\frac{r_{0}^{2}}{\rho_{0}'} \\ \pi_{0}\rho_{0}\sqrt{\frac{N_{a}-1}{2}} = Q(N_{a}) \\ p_{0}r_{0} = Q(2) \end{cases}$$

Compact equations

Practical user necessary informations: let us take the following generic Hamiltonian

$$H = \sum_{i=1}^{N_a} T_a(|\vec{p}_i|) + T_b(|\vec{p}_b|) + \sum_{i < j=2}^{N_a} V_{aa}(|\vec{r}_i - \vec{r}_j|) + \sum_{i=1}^{N_a} V_{ab}(|\vec{r}_i - \vec{r}_b|),$$

the next system gives an approximation for its spectrum [9]:

$$\begin{cases} E = N_a T_a(\pi_0') + T_b(p_0) + C_{N_a}^2 V_{aa}(\rho_0) + N_a V_{ab}(\rho_0') \\ T_a'(\pi_0') \frac{\pi_0^2}{\pi_0'} = C_{N_a}^2 V_{aa}'(\rho_0) \rho_0 + \frac{N_a - 1}{2} V_{ab}'(\rho_0') \frac{\rho_0^2}{\rho_0'} \\ T_b'(p_0) p_0 + \frac{1}{N_a} T_a'(\pi_0') \frac{\rho_0^2}{\pi_0'} = N_a V_{ab}'(\rho_0') \frac{r_0^2}{\rho_0'} \\ \pi_0 \rho_0 \sqrt{\frac{N_a - 1}{2}} = Q(N_a) \\ p_0 r_0 = Q(2) \end{cases}$$

• with
$$\pi'_0{}^2 = \frac{\pi_0^2}{N_a} + \frac{\rho_0^2}{N_a^2}$$
 and $\rho'_0{}^2 = \frac{N_a - 1}{2N_a} \rho_0^2 + r_0^2$
• with $Q(M) = \sum_{i=1}^{M-1} \left(2n_i + l_i + \frac{D}{2}\right)$

To apply the DOSM to the compact equations

Strategy [10]:

- (1) To start with a classical purely orbital solution
- (2) To start a radial perturbation (still classically)
- (3) To quantify the perturbation

And after comparison of ET and DOSM, we get:

^[10] arXiv 2111 14744 (to appear in Fow Rody Syst.)

To apply the DOSM to the compact equations

Strategy [10]:

- (1) To start with a classical purely orbital solution
- (2) To start a radial perturbation (still classically)
- (3) To quantify the perturbation

And after comparison of ET and DOSM, we get:

$$\begin{split} \phi_{N_a} &= \frac{\lambda_{N_a}}{B_{N_a}} \sqrt{\frac{2A''}{(N_a-1)m}} \quad \text{and} \quad \phi_b = \frac{\lambda_b}{B_b} \sqrt{\frac{B''}{m}} \\ \end{split}$$
where $B_{N_a} &= T_a'(\tilde{\pi}_0') \frac{\tilde{\pi}_0^2}{\tilde{\pi}_0'} \text{ and } B_b = T_a'(\tilde{\pi}_0') \frac{\tilde{h}_0^2}{N_a \tilde{\pi}_0'} + T_b'(\tilde{\mu}_0) \tilde{p}_0, \\ m &= \sqrt{\mu_a \mu_b}_b, \\ \begin{cases} A'' &= \sqrt{\frac{\mu_a}{\mu_b} k_a} & \text{if } k_c = 0, \\ B'' &= \sqrt{\frac{\mu_a}{\mu_b} k_b} & \text{if } k_c = 0, \\ \\ \frac{A'' &= \sqrt{\frac{\mu_a}{\mu_b} k_a} + \frac{k_2}{2}}{m_c} & \text{if } \epsilon = \frac{1}{k_c} \left(\sqrt{\frac{\mu_a}{\mu_b}} k_b - \sqrt{\frac{\mu_b}{\mu_b}} k_a \right) = 0, \\ \begin{cases} A'' &= \sqrt{\frac{\mu_a}{\mu_b} k_a} + \frac{k_2}{2} & \text{if } \epsilon = \frac{1}{k_c} \left(\sqrt{\frac{\mu_a}{\mu_b}} k_b - \sqrt{\frac{\mu_b}{\mu_b}} k_a \right) = 0, \\ \frac{A'' &= \sqrt{\frac{\mu_a}{\mu_b} k_a + \frac{k_2}{2}} & \text{if } \epsilon = \frac{1}{k_c} \left(\sqrt{\frac{\mu_a}{\mu_b}} k_b - \sqrt{\frac{\mu_b}{\mu_b}} k_a \right) = 0, \\ \begin{cases} A'' &= \sqrt{\frac{\mu_a}{\mu_b} k_a + \frac{k_2}{2}} & \text{if } \epsilon = \frac{1}{k_c} \left(\sqrt{\frac{\mu_a}{\mu_b}} k_b - \sqrt{\frac{\mu_b}{\mu_b}} k_a \right) = 0, \\ \frac{A'' &= \sqrt{\frac{\mu_a}{\mu_b} k_a + \frac{k_2}{2}} & \text{if } \epsilon = \frac{1}{k_c} \left(\sqrt{\frac{\mu_a}{\mu_b}} k_b - \sqrt{\frac{\mu_b}{\mu_b}} k_a \right) = 0, \\ \begin{cases} A'' &= \sqrt{\frac{\mu_a}{\mu_b} k_a + \frac{k_2}{2}} & \text{if } \epsilon = \frac{1}{k_c} \left(\sqrt{\frac{\mu_a}{\mu_b}} k_b - \sqrt{\frac{\mu_b}{\mu_b}} k_a \right) = 0, \\ \frac{A'' &= \sqrt{\frac{\mu_a}{\mu_b} k_a + \frac{k_2}{2}} & \text{if } \epsilon \neq 0, \\ \end{cases} & \text{if } \epsilon \neq 0, \\ \end{cases} & \text{if } \epsilon \neq 0, \\ B'' &= \sqrt{\frac{\mu_a}{\mu_b} k_b + \frac{k_2}{2} \left(\frac{i}{(i\sqrt{1+\epsilon^2} - \epsilon)} \right) & \text{if } \epsilon \neq 0, \\ R'' &= \frac{2\pi_0^2 \tilde{\mu}_0^2}{N_a^2 \sqrt{2} \tilde{\mu}_0' \tilde{\mu}_0'} \left(T_a'' (\tilde{\pi}_0') T_b - T_a'' (\tilde{\pi}_0') \right) + \frac{(N_a - 1)\tilde{\mu}_0 \tilde{\mu}_0}{\tilde{\mu}_0'} \left(T_a'' (\tilde{\mu}_0) \tilde{\mu}_0' \right) - \frac{(N_a - 1)\tilde{\mu}_0 \tilde{\mu}_0}{\tilde{\mu}_0' \sqrt{1-\frac{1}{\mu}(\delta_0')}} \right) \\ \frac{R'' &= \sqrt{\frac{\mu_a}{\mu_b} k_b + \frac{k_2}{2} \left(\frac{i}{(i\sqrt{1+\epsilon^2} - \epsilon)} \right) & \text{if } \epsilon \neq 0, \\ R'' &= \frac{2\pi_0^2 \tilde{\mu}_0^2}{\tilde{\mu}_0'^2} \frac{1}{\tilde{\mu}_0' \tilde{\mu}_0' \tilde{\mu}_0' - \frac{1}{\tilde{\mu}_0' \tilde{\mu}_0'} \right) \\ \frac{R'' &= \sqrt{\frac{\mu_a}{\mu_b} k_b + \frac{k_2}{2} \left(\frac{i}{(i\sqrt{1+\epsilon^2} - \epsilon)} \right) & \text{if } \epsilon \neq 0, \\ R'' &= \frac{2\pi_0^2 \tilde{\mu}_0^2}{\tilde{\mu}_0'^2} \frac{1}{\tilde{\mu}_0' \tilde{\mu}_0' - \frac{1}{\tilde{\mu}_0' \tilde{\mu}_0'} \right) \\ \frac{R'' &= \sqrt{\frac{\mu_a}{\mu_b} k_b + \frac{k_2}{2} \left(\frac{i}{(i\sqrt{1+\epsilon^2} - \epsilon)} \right) \\ \frac{R'' &= \sqrt{\frac{\mu_a}{\mu_b} k_b + \frac{k_2}{2} \left(\frac{i}{(i\sqrt{1+\epsilon^2} - \epsilon)} \right) \\ R'' &= \sqrt{\frac{\mu_a}{\mu_b} k_b + \frac{k_2}{2} \left(\frac{i}{(i\sqrt{1+\epsilon^2} - \epsilon)} \right) } \\ \frac{R'' &= \sqrt{\frac{\mu_a}{\mu_b} k_b$

[10] arXiv:2111.14744 (to appear in Few-Body Syst.)
Tests

Test: $H = \sum_{i=1}^{3} |\vec{p_i}| + (\vec{r_1} - \vec{r_2})^2 + \kappa \sum_{i=1}^{2} (\vec{r_i} - \vec{r_3})^2$ (D = 3)

Tests

Test:
$$H = \sum_{i=1}^{3} |\vec{p_i}| + (\vec{r_1} - \vec{r_2})^2 + \kappa \sum_{i=1}^{2} (\vec{r_i} - \vec{r_3})^2$$
 $(D = 3)$

$$T_{a}(x) = T_{b}(x) = |x|$$
 $V_{aa}(x) = x^{2}$ $V_{ab}(x) = \kappa x^{2}$

Tests

Test:
$$H = \sum_{i=1}^{3} |\vec{p_i}| + (\vec{r_1} - \vec{r_2})^2 + \kappa \sum_{i=1}^{2} (\vec{r_i} - \vec{r_3})^2$$
 $(D = 3)$

 $T_a(x) = T_b(x) = |x|$ $V_{aa}(x) = x^2$ $V_{ab}(x) = \kappa x^2$ • $\kappa = 0.1, 10$:

(n_a, n_b, l_a, l_b)	κ	Exact [8,9]	ET	$\Delta(\%)$	DOSM	$\Delta(\%)$
(0,0,0,0)	0.1	5.288	5.597	5.5	5.307	0.4
	10	14.506	15.352	5.8	14.699	1.3
(0,0,1,1)	0.1	7.515	7.868	4.7	7.625	1.5
	10	20.340	21.580	6.1	21.032	3.4
(1,0,0,0)	0.1	8.067	8.570	6.2	8.010	0.7
	10	19.134	20.272	5.9	19.291	0.8
(0,1,0,0)	0.1	6.750	6.970	3.2	6.571	2.7
	10	21.318	22.598	6.0	21.397	0.4

Tests

Test:
$$H = \sum_{i=1}^{3} |\vec{p_i}| + (\vec{r_1} - \vec{r_2})^2 + \kappa \sum_{i=1}^{2} (\vec{r_i} - \vec{r_3})^2$$
 $(D = 3)$

 $T_a(x) = T_b(x) = |x|$ $V_{aa}(x) = x^2$ $V_{ab}(x) = \kappa x^2$ • $\kappa = 0.1, 10$:

(n_a, n_b, l_a, l_b)	κ	Exact [8,9]	ET	$\Delta(\%)$	DOSM	$\Delta(\%)$
(0,0,0,0)	0.1	5.288	5.597	5.5	5.307	0.4
	10	14.506	15.352	5.8	14.699	1.3
(0,0,1,1)	0.1	7.515	7.868	4.7	7.625	1.5
	10	20.340	21.580	6.1	21.032	3.4
(1,0,0,0)	0.1	8.067	8.570	6.2	8.010	0.7
	10	19.134	20.272	5.9	19.291	0.8
(0,1,0,0)	0.1	6.750	6.970	3.2	6.571	2.7
	10	21.318	22.598	6.0	21.397	0.4

• Envelope theory is an approximation method ...

- Envelope theory is an approximation method ...
 - easy to implement,

- Envelope theory is an approximation method ...
 - easy to implement,
 - sometimes endowed with a variational character,

- Envelope theory is an approximation method ...
 - easy to implement,
 - sometimes endowed with a variational character,
 - reliable even though not very accurate...

- Envelope theory is an approximation method ...
 - easy to implement,
 - sometimes endowed with a variational character,
 - reliable even though not very accurate...
 - but this can be improved thanks to the DOSM.

- Envelope theory is an approximation method ...
 - easy to implement,
 - sometimes endowed with a variational character,
 - reliable even though not very accurate...
 - but this can be improved thanks to the DOSM.
- The introduced method covers systems with ...

- Envelope theory is an approximation method ...
 - easy to implement,
 - sometimes endowed with a variational character,
 - reliable even though not very accurate...
 - but this can be improved thanks to the DOSM.
- The introduced method covers systems with ...
 - N identical particles,

- Envelope theory is an approximation method ...
 - easy to implement,
 - sometimes endowed with a variational character,
 - reliable even though not very accurate...
 - but this can be improved thanks to the DOSM.
- The introduced method covers systems with ...
 - N identical particles,
 - N_a identical particles and one different,

- Envelope theory is an approximation method ...
 - easy to implement,
 - sometimes endowed with a variational character,
 - reliable even though not very accurate...
 - but this can be improved thanks to the DOSM.
- The introduced method covers systems with ...
 - N identical particles,
 - N_a identical particles and one different,
 - (almost) arbitrary kinetics,

- Envelope theory is an approximation method ...
 - easy to implement,
 - sometimes endowed with a variational character,
 - reliable even though not very accurate...
 - but this can be improved thanks to the DOSM.
- The introduced method covers systems with ...
 - N identical particles,
 - N_a identical particles and one different,
 - (almost) arbitrary kinetics,
 - two-body interactions,

- Envelope theory is an approximation method ...
 - easy to implement,
 - sometimes endowed with a variational character,
 - reliable even though not very accurate...
 - but this can be improved thanks to the DOSM.
- The introduced method covers systems with ...
 - N identical particles,
 - N_a identical particles and one different,
 - (almost) arbitrary kinetics,
 - two-body interactions,
- ... but generalizations exist:

- Envelope theory is an approximation method ...
 - easy to implement,
 - sometimes endowed with a variational character,
 - reliable even though not very accurate...
 - but this can be improved thanks to the DOSM.
- The introduced method covers systems with ...
 - N identical particles,
 - N_a identical particles and one different,
 - (almost) arbitrary kinetics,
 - two-body interactions,
- ... but generalizations exist:
 - K-body forces,

- Envelope theory is an approximation method ...
 - easy to implement,
 - sometimes endowed with a variational character,
 - reliable even though not very accurate...
 - but this can be improved thanks to the DOSM.
- The introduced method covers systems with ...
 - N identical particles,
 - N_a identical particles and one different,
 - (almost) arbitrary kinetics,
 - two-body interactions,
- ... but generalizations exist:
 - *K*-body forces,
 - N_a particles of type a and N_b of type b,

- Envelope theory is an approximation method ...
 - easy to implement,
 - sometimes endowed with a variational character,
 - reliable even though not very accurate...
 - but this can be improved thanks to the DOSM.
- The introduced method covers systems with ...
 - N identical particles,
 - N_a identical particles and one different,
 - (almost) arbitrary kinetics,
 - two-body interactions,
- ... but generalizations exist:
 - K-body forces, [11]
 - N_a particles of type a and N_b of type b, [10]

^[11] Semay, Sicorello (2018) Few-Body Syst., 59, 119

^[10] Semay, Cimino, Willemyns (2020) Few-Body Syst., 61, 19

- Envelope theory is an approximation method ...
 - easy to implement,
 - sometimes endowed with a variational character,
 - reliable even though not very accurate...
 - but this can be improved thanks to the DOSM.
- The introduced method covers systems with ...
 - N identical particles,
 - N_a identical particles and one different,
 - (almost) arbitrary kinetics,
 - two-body interactions,
- ... but generalizations exist:
 - *K*-body forces,
 - N_a particles of type a and N_b of type b,

- Envelope theory is an approximation method ...
 - easy to implement,
 - sometimes endowed with a variational character,
 - reliable even though not very accurate...
 - but this can be improved thanks to the DOSM.
- The introduced method covers systems with ...
 - N identical particles,
 - N_a identical particles and one different,
 - (almost) arbitrary kinetics,
 - two-body interactions,
- ... but generalizations exist:
 - *K*-body forces,
 - N_a particles of type a and N_b of type b,
- ⇒ Many applications: hadronic, nuclear, atomic and molecular, solid state physics...

THE ENVELOPE THEORY, THE METHOD THAT YOU NEED