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The ET for systems of all identical particles
What is the ET ?

The ET provides approximation of spectrum for a very large
class of Hamiltonians [1].

For today, we will use:

H =
N∑
i=1

T (pi) +
N∑

i<j=2

V (rij)

with pi = |p⃗i | and rij = |r⃗i − r⃗j |.

The basic idea of the ET is to approximate this hamiltonian
with a set of harmonic oscillator (HO) Hamiltonian [2].

[1] Semay, Ducobu (2016) Eur. J. Phys., 37, 045403

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
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The ET for systems of all identical particles
What is the ET ?

Remark about the N identical body HO:

HOH =
N∑
i=1

p⃗ 2
i

2m
+

N∑
i<j=2

ρr⃗ 2
ij − P⃗2

2Nm
with P⃗ =

N∑
i=1

p⃗i .

The exact spectrum for this Hamiltonian can be analytically
found [3]:

Eni ,li =

√
2Nρ

m
Q(N) with Q(N) =

N−1∑
i=1

(2ni + li + D/2)

(We use natural units).

[3] Silvestre-Brac, Semay, Buisseret, Brau (2010) J. Math. Phys., 51, 032104
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The ET for systems of all identical particles
Essential idea behind the ET

Aim: �nd the spectrum of this generic Hamiltonian

H =
N∑
i=1

T (pi) +
N∑

i<j=2

V (rij).

To this end, we introduce an auxiliary Hamiltonian:

H̃ =
N∑
i=1

T̃i(pi , µi) +
N∑

i<j=2

Ṽij(rij , ρij).

µi and ρij are called auxiliary �elds [2]. For now, they
depend on the variables p⃗i and r⃗i .

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
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ET for N id. DOSM for N id. ET & DOSM for Na + 1

The ET for systems of all identical particles
Essential idea behind the ET

Commentaries about the auxiliary Hamiltonian:

H̃ =
N∑
i=1

T̃i(pi , µi) +
N∑

i<j=2

Ṽij(rij , ρij).

Illustration for the potential:

Ṽij(rij , ρij) = ρij r
2
ij + V (J(ρij)) + ρijJ(ρij)

2

where J(x) is the inverse of V ′(x)/(2x).

⇒ H̃ looks like an HO Hamiltonian.

Setting the constraints δH̃
δµi

= δH̃
δρij

= 0, H is recovered [2].

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
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The ET for systems of all identical particles
Essential idea behind the ET

Idea behind the ET: to replace the auxiliary �elds by
auxiliary parameters [2]. H̃ becomes then an HO
Hamiltonian.

The spectrum of H is approximately recovered by setting
∂Ẽ
∂µi

∣∣∣
µi=µi0

= ∂Ẽ
∂ρij

∣∣∣
ρij=ρij0

= 0 where Ẽ is an energy level of H̃ [2].

Conclusion: for each energy level, the method gives a set
{µi0, ρij0} that approximates H .

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
8 / 31



ET for N id. DOSM for N id. ET & DOSM for Na + 1

The ET for systems of all identical particles
Essential idea behind the ET

Idea behind the ET: to replace the auxiliary �elds by
auxiliary parameters [2]. H̃ becomes then an HO
Hamiltonian.

The spectrum of H is approximately recovered by setting
∂Ẽ
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∂Ẽ
∂µi

∣∣∣
µi=µi0

= ∂Ẽ
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The ET for systems of all identical particles
Essential idea behind the ET

⇒ Basically H is approximated by a set of auxiliary
HO Hamiltonians, one for each level [2].

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

[4] Semay, Roland (2013) Res. Phys., 3, 231
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The ET for systems of all identical particles
Essential idea behind the ET

⇒ Basically H is approximated by a set of auxiliary
HO Hamiltonians, one for each level [2].

It can be shown that the constraints

∂Ẽ

∂µi

∣∣∣∣
µi=µi0

=
∂Ẽ

∂ρij

∣∣∣∣
ρij=ρij0

= 0

lead to a set of three equations called compact equations
of the ET [4].

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

[4] Semay, Roland (2013) Res. Phys., 3, 231
9 / 31



ET for N id. DOSM for N id. ET & DOSM for Na + 1

The ET for systems of all identical particles
Compact equations

Practical user necessary informations: let us take the
following generic Hamiltonian

H =
N∑
i=1

T (|p⃗i |) +
N∑

i<j=2

V (|r⃗i − r⃗j |),

the next system gives an approximation for its spectrum [4]:
E = NT (p0) + C 2

NV (ρ0)

Np0T
′(p0) = C 2

Nρ0V
′(ρ0)√

C 2
Nρ0p0 = Q

with Q(N) =
∑N−1

i=1 (2ni + li) + (N − 1)D
2
,

with, ∀ i , j , p20 = ⟨p⃗ 2
i ⟩ and ρ20 = ⟨(r⃗i − r⃗j)

2⟩.

[4] Semay, Roland (2013) Res. Phys., 3, 231
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The ET for systems of all identical particles
Commentary about ET

Variational character: ET
can give an upper or a lower
bound [2].

The compact equations have
a nice semi-classical
interpretation [4].

Solution may be analytical
with N as a variable [5].

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

[4] Semay, Roland (2013) Res. Phys., 3, 231

[5] Semay (2015) Few-Body Syst., 56, 149
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The ET for systems of all identical particles
A variational character for ET

Variational character: for some Hamiltonian, the ET
gives an upper or a lower bound [2].

Variational character = H̃ are tangent to H

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

[6] Semay (2011) Phys. Rev. A, 83, 024101
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The ET for systems of all identical particles
A variational character for ET

Variational character: for some Hamiltonian, the ET
gives an upper or a lower bound [2].

Variational character = H̃ are tangent to H +
comparison theorem [6].

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

[6] Semay (2011) Phys. Rev. A, 83, 024101
12 / 31



ET for N id. DOSM for N id. ET & DOSM for Na + 1

The ET for systems of all identical particles
A variational character for ET

Variational character: for some Hamiltonian, the ET
gives an upper or a lower bound [2].

In a practical way: de�ne the function bV (x) such that
bV (x

2) = V (x).

bV is concave ⇒ upper bound
bV is convexe ⇒ lower bound
bV is �at ⇒ exact result

Warning: this must be true for V and T

if it is not the case ⇒ no de�ned variational character

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
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The ET for systems of all identical particles
A semi-classical interpretation

Semi-classical interpretation for the compact
equations [4]:

N particles rotating on a circle

With a "symmetrization"

Energy: E ≈ NT (p0)+C 2
NV (ρ0)
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Hamiltonian: T (p) = p⃗ 2

2m
V (x) = ax2

⇒ "Approximated" spectrum: E = Q
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Hamiltonian: T (x) = Fxα V (x) = sgn(β)Gxβ

⇒ Approximated spectrum:

E = sgn(β)(β + α)
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⇒ Approximated spectrum : E = −C2
NVg e2W (δ) (2W (δ) + 1) where
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N
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N
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Q2

)1/2
and W (x) is a Lambert function.
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The ET for systems of all identical particles
Tests

Figure: Biding energy for weakly-interacting bosons (gaussian
interaction) with D = 3 - Exact results in circles, ET results in
diamonds.

Results are from [5] Semay (2015) Few-Body Syst., 56, 149 16 / 31
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The ET for systems of all identical particles
Tests

Figure: Biding energy for self-gravitating bosons (coulomb
interaction) with D = 3 - Exact results in circles, ET results in
diamonds.

Results are from [5] Semay (2015) Few-Body Syst., 56, 149 16 / 31
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To improve the ET

The improved ET: Q has a strong degeneracy.

The idea is to modify Q (inspired by [7]),

How to choose ϕ ?

�t on a single known accurate solution [5]
DOSM [8]
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The DOSM for systems of all identical particles
Methodology

Methodology [8]:

To choose li and calculate λ,

To solve the ET compact equations for a purely orbital
excitation (to �nd ρ̃0 and p̃0),

To compute ϕ,

To choose ni and calculate Q (do not forget ϕ),

To resolve ET compact equations with this Q.

[8] Semay (2015) Eur. Phys. J. Plus, 130, 156
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To choose li and calculate λ,

To solve the ET compact equations for a purely orbital
excitation (to �nd ρ̃0 and p̃0),

To compute ϕ,

To choose ni and calculate Q (do not forget ϕ),

To resolve ET compact equations with this Q.
E = NT (p0) + C 2

NV (ρ0)√
C 2
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The ET for systems of all identical particles
Example

Hamiltonian: T (x) = Fxα V (x) = sgn(β)Gxβ

⇒ Determination of ρ̃0 and p̃0:

ρ̃0 =

(
NαFλα

|β|G
√
CN

α+2

)1/(α+β)

and p̃0 =
λ

√
CN ρ̃0

⇒ Computation of ϕ:

ϕ =
√

α + β

⇒ Final spectrum:

E = sgn(β)(β + α)

((
NF

|β|

)β (G

α

)α (√
C2
N

)2α−αβ

Qαβ

)
1/(α+β)

with Q =
√

α+ β

N−1∑
i=1

(
ni +

1

2

)
+ λ

Result is from [9] arXiv:2111.14744 (to appear in Few-Body Syst.)
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The ET for systems of all identical particles
Tests

Figure: Biding energy for weakly-interacting bosons (gaussian
interaction) with d = 3 - Exact results in circles, ET results in
diamonds, ϕ = 1.82 results in dashed line.

Results are from [5] Semay (2015) Few-Body Syst., 56, 149
24 / 31
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The ET for systems of all identical particles
Tests

Figure: Biding energy for self-gravitating bosons (coulomb
interaction) with d = 3 - Exact results in circles, ET results in
diamonds, ϕ = 1 results in dashed line.

Results are from [5] Semay (2015) Few-Body Syst., 56, 149
24 / 31
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The ET for systems of all identical particles
Tests

n1 + n2 l1 + l2 Exact ET (ϕ = 2) ET (ϕ =
√
2)

0 0 2.128 2.468 2.165
0 1 2.606 2.914 2.662
1 0 2.739 3.300 2.842
0 2 2.959 3.300 3.080
1 1 3.125 3.646 3.237
0 3 3.299 3.646 3.448
2 0 3.260 3.961 3.387
1 2 3.422 3.961 3.589
0 4 3.581 3.961 3.780

∆ 15% 3.8%

Table: Eigenmasses in GeV given by a model of light baryons
(D = 3 and N = 3).

Results are from [5] Semay (2015) Few-Body Syst., 56, 149
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ET for N id. DOSM for N id. ET & DOSM for Na + 1

The ET and DOSM for systems of Na + 1 particles
Why to generalize ?

Hybrid baryons: three quarks + one constituent gluon

Large-N approach of QCD :

N quarks + one gluon

Constituent approach:

Interaction with gluonic �eld⇝⇝⇝ potential

Combination:

To solve a Na + 1 particles quantum system

26 / 31



ET for N id. DOSM for N id. ET & DOSM for Na + 1

The ET and DOSM for systems of Na + 1 particles
Why to generalize ?

Hybrid baryons: three quarks + one constituent gluon

Large-N approach of QCD :

N quarks + one gluon

Constituent approach:

Interaction with gluonic �eld⇝⇝⇝ potential

Combination:

To solve a Na + 1 particles quantum system

26 / 31



ET for N id. DOSM for N id. ET & DOSM for Na + 1

The ET and DOSM for systems of Na + 1 particles
Why to generalize ?

Hybrid baryons: three quarks + one constituent gluon

Large-N approach of QCD :

N quarks + one gluon

Constituent approach:

Interaction with gluonic �eld⇝⇝⇝ potential

Combination:

To solve a Na + 1 particles quantum system

26 / 31



ET for N id. DOSM for N id. ET & DOSM for Na + 1

The ET and DOSM for systems of Na + 1 particles
Why to generalize ?

Hybrid baryons: three quarks + one constituent gluon

Large-N approach of QCD :

N quarks + one gluon

Constituent approach:

Interaction with gluonic �eld⇝⇝⇝ potential

Combination:

To solve a Na + 1 particles quantum system

26 / 31



ET for N id. DOSM for N id. ET & DOSM for Na + 1

The ET and DOSM for systems of Na + 1 particles
Why to generalize ?

Hybrid baryons: three quarks + one constituent gluon

Large-N approach of QCD :

N quarks + one gluon

Constituent approach:

Interaction with gluonic �eld⇝⇝⇝ potential

Combination:

To solve a Na + 1 particles quantum system

26 / 31



ET for N id. DOSM for N id. ET & DOSM for Na + 1

The ET and DOSM for systems of Na + 1 particles
Compact equations

Practical user necessary informations: let us take the
following generic Hamiltonian

H =

Na∑
i=1

Ta(|p⃗i |) + Tb(|p⃗b|) +
Na∑

i<j=2

Vaa(|r⃗i − r⃗j |) +
Na∑
i=1

Vab(|r⃗i − r⃗b|),

[9] Semay, Cimino, Willemyns (2020) Few-Body Syst., 61, 19 27 / 31
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Compact equations

Practical user necessary informations: let us take the
following generic Hamiltonian

H =

Na∑
i=1

Ta(|p⃗i |) + Tb(|p⃗b|) +
Na∑

i<j=2

Vaa(|r⃗i − r⃗j |) +
Na∑
i=1

Vab(|r⃗i − r⃗b|),

the next system gives an approximation for its spectrum [9]:

E = NaTa(π′
0) + Tb(p0) + C2

Na
Vaa(ρ0) + NaVab(ρ

′
0)

T ′
a(π

′
0)

π2
0

π′
0

= C2
Na

V ′
aa(ρ0)ρ0 +

Na−1
2

V ′
ab(ρ

′
0)

ρ2
0

ρ′
0

T ′
b(p0)p0 +

1
Na

T ′
a(π

′
0)

p2
0

π′
0

= NaV ′
ab(ρ

′
0)

r2
0

ρ′
0

π0ρ0

√
Na−1
2

= Q(Na)

p0r0 = Q(2)

with π′ 2
0 =

π2
0

Na
+

p2
0

N2
a
and ρ′ 20 = Na−1

2Na
ρ20 + r20

with Q(M) =
∑M−1

i=1

(
2ni + li +

D
2

)
[9] Semay, Cimino, Willemyns (2020) Few-Body Syst., 61, 19 27 / 31
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The ET and DOSM for systems of Na + 1 particles
Compact equations

Comparison with compact equations for systems of all
identical particles:


E = NT (p0) + C2

NV (ρ0)

Np0T ′(p0) = C2
Nρ0V

′(ρ0)√
C2
Nρ0p0 = Q

←→
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The ET and DOSM for systems of Na + 1 particles
To apply the DOSM to the compact equations

Strategy [10]:
(1) To start with a classical purely orbital solution
(2) To start a radial perturbation (still classically)
(3) To quantify the perturbation

And after comparison of ET and DOSM, we get:

[10] arXiv:2111.14744 (to appear in Few-Body Syst.)
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The ET and DOSM for systems of Na + 1 particles
Tests

Test: H =
∑3

i=1 |p⃗i |+ (r⃗1 − r⃗2)
2 + κ

∑2
i=1(r⃗i − r⃗3)

2 (D = 3)

Ta(x) = Tb(x) = |x | Vaa(x) = x2 Vab(x) = κx2

κ = 0.1, 10 :

Results are from [10] arXiv:2111.14744 (to appear in Few-Body Syst.)
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Test: H =
∑3

i=1 |p⃗i |+ (r⃗1 − r⃗2)
2 + κ

∑2
i=1(r⃗i − r⃗3)

2 (D = 3)

Ta(x) = Tb(x) = |x | Vaa(x) = x2 Vab(x) = κx2

κ = 0.1, 10 :

(na, nb, la, lb) κ Exact [8,9] ET ∆(%) DOSM ∆(%)

(0, 0, 0, 0) 0.1 5.288 5.597 5.5 5.307 0.4
10 14.506 15.352 5.8 14.699 1.3

(0, 0, 1, 1) 0.1 7.515 7.868 4.7 7.625 1.5
10 20.340 21.580 6.1 21.032 3.4

(1, 0, 0, 0) 0.1 8.067 8.570 6.2 8.010 0.7
10 19.134 20.272 5.9 19.291 0.8

(0, 1, 0, 0) 0.1 6.750 6.970 3.2 6.571 2.7
10 21.318 22.598 6.0 21.397 0.4

Results are from [10] arXiv:2111.14744 (to appear in Few-Body Syst.)
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The ET and DOSM for systems of Na + 1 particles
Tests

Test: H =
∑3

i=1 |p⃗i |+ (r⃗1 − r⃗2)
2 + κ

∑2
i=1(r⃗i − r⃗3)

2 (D = 3)

Ta(x) = Tb(x) = |x | Vaa(x) = x2 Vab(x) = κx2

κ = 0.1, 10 :

(na, nb, la, lb) κ Exact [8,9] ET ∆(%) DOSM ∆(%)

(0, 0, 0, 0) 0.1 5.288 5.597 5.55.55.5 5.307 0.40.40.4
10 14.506 15.352 5.85.85.8 14.699 1.31.31.3

(0, 0, 1, 1) 0.1 7.515 7.868 4.74.74.7 7.625 1.51.51.5
10 20.340 21.580 6.16.16.1 21.032 3.43.43.4

(1, 0, 0, 0) 0.1 8.067 8.570 6.26.26.2 8.010 0.70.70.7
10 19.134 20.272 5.95.95.9 19.291 0.80.80.8

(0, 1, 0, 0) 0.1 6.750 6.970 3.23.23.2 6.571 2.72.72.7
10 21.318 22.598 6.06.06.0 21.397 0.40.40.4

Results are from [10] arXiv:2111.14744 (to appear in Few-Body Syst.)
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Conclusion

Envelope theory is an approximation method ...

easy to implement,
sometimes endowed with a variational character,
reliable even though not very accurate...

but this can be improved thanks to the DOSM.

The introduced method covers systems with ...
N identical particles,
Na identical particles and one di�erent,
(almost) arbitrary kinetics,
two-body interactions,

... but generalizations exist:
K -body forces,
Na particles of type a and Nb of type b,

⇒ Many applications: hadronic, nuclear, atomic and
molecular, solid state physics...
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