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The ET provides approximation of spectrum for a very large
class of Hamiltonians [1].

For today, we will use:

H = ZT(p;) + Z V(ry)

with p; = |pj| and rj = |r; — 1j|.

The basic idea of the ET is to approximate this hamiltonian
with a set of harmonic oscillator (HO) Hamiltonian [2].
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Remark about the N identical body HO:

—,

2 N
HOH—Z—+ Zp Sy with P =" 5.
i=1

i<j=2

The exact spectrum for this Hamiltonian can be analytically

found [3]:

E,= \/%Q(N) with Q(N) = %(Qn- + 1+ DJ/2)
n;,l; m i i

i=1

(We use natural units).
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Essential idea behind the ET

Aim: find the spectrum of this generic Hamiltonian

H= Z T(pi) + Z V(r;).

To this end, we introduce an auxiliary Hamiltonian:

N
A= Tilpiu)+ Y Vilrg, py)-
i=1 i<j=2

@ /i and pj; are called auxiliary fields [2]. For now, they
depend on the variables p; and r;.

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
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Commentaries about the auxiliary Hamiltonian:
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Essential idea behind the ET

Commentaries about the auxiliary Hamiltonian:

N

N
FI:Z Ipl)/’l/l Z\Zr’f”f

i=1 j=2
@ lllustration for the potential:

Vi(ry. p5) = piry + V(I(py)) + pyd(py)?
where J(x) is the inverse of V'(x)/(2x).
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o lllustration for the potential:
Vi(ry. p5) = piry + V(I(py)) + pyd(py)?
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The ET for systems of all identical particles
Essential idea behind the ET

Commentaries about the auxiliary Hamiltonian:

N

N
FI:Z Ipl)/’l/l Z\Zr’f”f

i=1 j=2

o lllustration for the potential:
Vi(ry. p5) = piry + V(I(py)) + pyd(py)?
where J(x) is the inverse of V'(x)/(2x).

— H looks like an HO Hamiltonian.

@ Setting the constraints 55 = 2% =0, H is recovered [2].

5p,J

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
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The ET for systems of all identical particles
Essential idea behind the ET

Idea behind the ET: to replace the auxiliary fields by
auxiliary parameters [2]. H becomes then an HO
Hamiltonian.

The spectrum of H is approximately recovered by setting

0E — 9E

Em = o = 0 where £ is an energy level of H [2].

Pij=Pijo

Hi=Hio

Conclusion: for each energy level, the method gives a set
{1ti0, pijo} that approximates H.

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
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Essential idea behind the ET

= Basically H is approximated by a set of auxiliary
HO Hamiltonians, one for each level [2].

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
[4] Semay, Roland (2013) Res. Phys., 3, 231
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The ET for systems of all identical particles
Essential idea behind the ET

= Basically H is approximated by a set of auxiliary
HO Hamiltonians, one for each level [2].

[t can be shown that the constraints

OE

9B _OE
8[/4 N

=0

Pij=Pijo

Hi=pio Ipjj

lead to a set of three equations called compact equations
of the ET [4].

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
[4] Semay, Roland (2013) Res. Phys., 3, 231
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The ET for systems of all identical particles

Compact equations

Practical user necessary informations: let us take the
following generic Hamiltonian

H= ZT!p, +ZV|r, Al

i<j=2
the next system gives an approximation for its spectrum [4]:
E = NT(po) + C§ V(po)
Npo T'(po) = CiypoV'(po)
\/CT%,/)oPo =Q
o with Q(N) = "' (2n + 1) + (N —1)2
r

e with, Vi,j, p3 = (p:?) and p3 = ((Fi —
[4] Semay, Roland (2013) Res. Phys., 3, 231

7)%)-
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Commentary about ET

e Variational character: ET
can give an upper or a lower
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The ET for systems of all identical particles

Commentary about ET

e Variational character: ET
can give an upper or a lower

bound [2].

@ The compact equations have
a nice semi-classical
interpretation [4].

@ Solution may be analytical
with N as a variable [5].

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601
[4] Semay, Roland (2013) Res. Phys., 3, 231

[5] Semay (2015) Few-Body Syst., 56, 149
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The ET for systems of all identical particles

A variational character for ET

e Variational character: for some Hamiltonian, the ET
gives an upper or a lower bound [2].

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

[6] Semay (2011) Phys. Rev. A, 83, 024101
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The ET for systems of all identical particles

A variational character for ET

e Variational character: for some Hamiltonian, the ET
gives an upper or a lower bound [2].
o Variational character = H are tangent to H +
comparison theorem [6].

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601

[6] Semay (2011) Phys. Rev. A, 83, 024101
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A variational character for ET

e Variational character: for some Hamiltonian, the ET

gives an upper or a lower bound [2].

e In a practical way: define the function by(x) such that
by(x?) = V().
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The ET for systems of all identical particles

A variational character for ET

e Variational character: for some Hamiltonian, the ET
gives an upper or a lower bound [2].
e In a practical way: define the function by(x) such that
by(x?) = V().
@ by is concave = upper bound
e by is convexe = lower bound
o by is flat = exact result
e Warning: this must be true for V and T

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601 1331
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0000000008000

The ET for systems of all identical particles

A variational character for ET

e Variational character: for some Hamiltonian, the ET
gives an upper or a lower bound [2].
e In a practical way: define the function by(x) such that
by(x?) = V().
@ by is concave = upper bound
@ by is convexe = lower bound
o by is flat = exact result
e Warning: this must be true for V and T
o if it is not the case = no defined variational character

[2] Silvestre-Brac, Semay, Buisseret (2012) J. Phys. Math., 4, 120601 1331
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The ET for systems of all identical particles

A semi-classical interpretation

e Semi-classical interpretation for the compact
equations [4]:

@ N particles rotating on a circle

e With a "symmetrization" E = NT(po) + CZV(po)
, v Cipopo = Q

© Energy: £~ NT(po) + CyV(po) Npo T'(po) = CfipoV'(p0)

@ Angular momentum:

L = Ndypo =~ / Ciipopo

[4] Semay, Roland (2013) Res. Phys., 3, 231
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@ N particles rotating on a circle

e With a "symmetrization" E = NT(po) + CZV(po)
) vV C/%/Popo I,Q

© Energy: £~ NT(po) + CyV(po) Npo T'(po) = CfipoV'(p0)

@ Angular momentum:
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Analycity

Hamiltonian: T(p) =2 V(x) = ax?

2m

= "Approximated" spectrum: £ =Q,/2Va

Hamiltonian: T(x) = Fx“ V(x) = sgn(B)Gx?
= Approximated spectrum:

=m0 ()" (5)" (V&)™ o)
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The ET for systems of all identical particles

Analycity

Hamiltonian: T(p) = % V(x) = ax?

= "Approximated" spectrum: £ =Q,/2Va

Hamiltonian: T(x) = Fx~ V(x) = sgn(j3)Gx”

= Approximated spectrum:
B « 2a—af 1/(a+pB)
E = sgn(8)(8 + a) ((%) (9)" (V) Q”‘B)
(—x)2

-2 V(x) = —Vee 7

Hamiltonian: T(p) = 5-
= Approximated spectrum : E = —c2v,e2W©®) 2w(5) +1) where
1/2 ) :
§=-1 (Wcﬁ)zazcﬁ) and w(x) is a Lambert function.

Results are from [5] Semay (2015) Few-Body Syst., 56, 149
15/31
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Figure: Biding energy for self-gravitating bosons (coulomb
interaction) with D = 3 - Exact results in circles, ET results in
diamonds.
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@ The improved ET: @ has a strong degeneracy.

[7] Lobashev, Trunov (2009) J. Phys. A, 42, 345202
[5] Semay (2015) Few-Body Syst., 56, 149

[8] Semay (2015) Eur. Phys. J. Plus, 130, 156
17/31



DOSM for N id.
©00000000

The ET for systems of all identical particles
To improve the ET

@ The improved ET: @ has a strong degeneracy.
e The idea is to modify Q (inspired by [7]),

[7] Lobashev, Trunov (2009) J. Phys. A, 42, 345202
[5] Semay (2015) Few-Body Syst., 56, 149

[8] Semay (2015) Eur. Phys. J. Plus, 130, 156
17/31



DOSM for N id.
©00000000

The ET for systems of all identical particles
To improve the ET

@ The improved ET: @ has a strong degeneracy.
e The idea is to modify Q (inspired by [7]),

Q= ngZ(n, ) Z/+ D22.

[7] Lobashev, Trunov (2009) J. Phys. A, 42, 345202
[5] Semay (2015) Few-Body Syst., 56, 149

[8] Semay (2015) Eur. Phys. J. Plus, 130, 156
17/31



DOSM for N id.
©00000000

The ET for systems of all identical particles
To improve the ET

@ The improved ET: @ has a strong degeneracy.
e The idea is to modify Q (inspired by [7]),

Q= gbZ(n, ) [Z/ %.

[7] Lobashev, Trunov (2009) J. Phys. A, 42, 345202
[5] Semay (2015) Few-Body Syst., 56, 149

[8] Semay (2015) Eur. Phys. J. Plus, 130, 156
17/31



DOSM for N id.
©00000000

The ET for systems of all identical particles
To improve the ET

@ The improved ET: @ has a strong degeneracy.
e The idea is to modify Q (inspired by [7]),

Q=¢§<n,+%>+H.

[7] Lobashev, Trunov (2009) J. Phys. A, 42, 345202
[5] Semay (2015) Few-Body Syst., 56, 149

[8] Semay (2015) Eur. Phys. J. Plus, 130, 156
17/31



DOSM for N id.
©00000000

The ET for systems of all identical particles
To improve the ET

@ The improved ET: @ has a strong degeneracy.
e The idea is to modify Q (inspired by [7]),

Q:¢[§(n,+%>]+x

i=1
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e The idea is to modify Q (inspired by [7]),
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@ To choose /; and calculate ),

@ To solve the ET compact equations for a purely orbital
excitation (to find gy and py),

@ To compute ¢,
@ To choose n; and calculate Q (do not forget ¢),

@ To resolve ET compact equations with this Q.

E = NT(po) + C§V(po)
vV Cipopo = Q

Npo T'(po) = CipoV'(po)

[8] Semay (2015) Eur. Phys. J. Plus, 130, 156
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= Determination of gy and py:
NaFro V@D
o (o) mee
= Computation of ¢:

6= atp

= Final spectrum:

e =smins+ o) (1) (8)" (va)™ ™ @ Jriees
N—1
with Q:\/m; (n;—i—%) +A
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Figure: Biding energy for weakly-interacting bosons (gaussian
interaction) with d = 3 - Exact results in circles, ET results in
diamonds, ¢ = 1.82 results in dashed line.

Results are from [5] Semay (2015) Few-Body Syst., 56, 149
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Figure: Biding energy for self-gravitating bosons (coulomb
interaction) with d = 3 - Exact results in circles, ET results in
diamonds, ¢ =1 results in dashed line.
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Tests

[ m+m [ h+h]Exact [ ET (¢=2) | ET (¢ =V?2) |

0 0 2.128 2.468 2.165
0 1 2.606 2.914 2.662
1 0 2.739 3.300 2.842
0 2 2.959 3.300 3.080
1 1 3.125 3.646 3.237
0 3 3.299 3.646 3.448
2 0 3.260 3.961 3.387
1 2 3.422 3.961 3.589
0 4 3.581 3.961 3.780
(A | 15% | 3.8% |

Table: Eigenmasses in GeV given by a model of light baryons
(D=3and N=3).

Results are from [5] Semay (2015) Few-Body Syst., 56, 149
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The ET and DOSM for systems of N, + 1 particles

Why to generalize ?

Hybrid baryons: three quarks + one constituent gluon

@ Large-N approach of QCD :

e N quarks + one gluon

e Constituent approach:
e Interaction with gluonic field ~» potential

@ Combination:
o To solve a N, + 1 particles quantum system
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Compact equations
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following generic Hamiltonian

N, N, N;
H=> T:(6) + To(1Bo]) + D Vaallfi = 7l) + Y Vas(I7i — 7]),
i=1 i<j=2 i=1
the next system gives an approximation for its spectrum [9]:
E = NaTa(mg) + Tb(po) + CR, Vaa(po) + Na Vi (pp)
Ti(n6) 28 = CR, Vialpo)oo + Moty (052
2
T4(Po)po + 3i- T’(Wo)p° = NaVy, () 7%
T0P0 Naz = Q(N,)
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@ with =52 = "°+ andp =Mt

e with qm)=xM; (2n,+/+ 2)
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The ET and DOSM for systems of N, + 1 particles

Compact equations

Comparison with compact equations for systems of all
identical particles:

E=N, Ta(ﬂ'o) + Tb(PO) + C2 Vaa(pO) + N, Vab(po)

E = NT(po) + C2V(po) Ti(x )— = CZ Via(po)po + Nz V! (wo)—°
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/Cz popo =
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[9] Semay, Cimino, Willemyns (2020) Few-Body Syst., 61, 19
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To apply the DOSM to the compact equations

Strategy [10]:

(1) To start with a classical purely orbital solution
(2) To start a radial perturbation (still classically)
(3) To quantify the perturbation

And after comparison of ET and DOSM, we get:

Aw, 24" N[BT

by, = o | N
oN, = Dy V Moo Om and @y = B;,V -

_
- o
+T3(po)po, Ha = 75 ~)/ an

a0

_ m? g Ty() | T\~
where By, = Ty() 27 By =Tiw) 32 :<$+ G ) )
=

m = \/[tallp, =
"=
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{ Vit e o,

5= itk
4”:\/%%—% o1 < //u . /“"k)
fe=L

B = [k, ks ke \Vm " i Nari? .
2T (Fo (l 02\ 1 o
+ L+ =5 V() + Na = =3 ) Vas(A'),

A= g, ke (oTrd—c 7o’ p'? W W)

{ V Z(W ) ite0, = 2

B — \/%LbJr ke (‘ AT E) _ 2% B> < /() — T, (’fu )) N (Na —,15;7]“1) <"Zﬂ7(ﬂu') _ ‘/xbg‘f(’l’)_
v po P

71’17
po’ 2N, 3
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72 Naro? ’fu \az o
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(1,0,0,0) 0.1 | 8.067 8570 6.2 8010 0.7
10 | 19.134 20272 59 16.201 0.8
(0,1,0,0) 0.1 [ 6.750 6.970 3.2 6571 2.7
10 | 21.318 22598 6.0 21.397 0.4
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two-body interactions,

@ ... but generalizations exist:
e K-body forces, [11]
e N, particles of type a and N, of type b, [10]

[11] Semay, Sicorello (2018) Few-Body Syst., 59, 119

[10] Semay, Cimino, Willemyns (2020) Few-Body Syst., 61, 19
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=- Many applications: hadronic, nuclear, atomic and

molecular, solid state physics...
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Conclusion

THE ENVELOPE THEORY, THE
METHOD THAT YOU NEED
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